The Role of Angiotensin II and Cyclic AMP in Alveolar Active Sodium Transport
نویسندگان
چکیده
Active alveolar fluid clearance is important in keeping airspaces free of edema. Angiotensin II plays a role in the pathogenesis of hypertension, heart failure and others. However, little is known about its contribution to alveolar fluid clearance. Angiotensin II effects are mediated by two specific receptors; AT1 and AT2. The localization of these two receptors in the lung, specifically in alveolar epithelial cells type II, was recently reported. We hypothesize that Angiotensin II may have a role in the regulation of alveolar fluid clearance. We investigated the effect of Angiotensin II on alveolar fluid clearance in rats using the isolated perfused lung model and isolated rat alveolar epithelial cells. The rate of alveolar fluid clearance in control rats was 8.6% ± 0.1 clearance of the initial volume and decreased by 22.5%, 28.6%, 41.6%, 48.7% and 39% in rats treated with 10-10 M, 10-9 M, 10-8 M, 10-7 M or 10-6 M of Ang II respectively (P < 0.003). The inhibitory effect of Angiotensin II was restored in losartan, an AT1 specific antagonist, pretreated rats, indicating an AT1 mediated effect of Ang II on alveolar fluid clearance. The expression of Na,K-ATPase proteins and cAMP levels in alveolar epithelial cells were down-regulated following the administration of Angiotensin II; suggesting that cAMP may be involved in AngII-induced reduced Na,K-ATPase expression, though the contribution of additional factors could not be excluded. We herein suggest a novel mechanism of clinical relevance by which angiotensin adversely impairs the ability of the lungs to clear edema.
منابع مشابه
Correction: The Role of Angiotensin II and Cyclic AMP in Alveolar Active Sodium Transport
The images for Figs 1 and 2 are incorrectly switched. The image that appears as Fig 1 should be Fig 2, and the image that appears as Fig 2 should be Fig 1. The figure captions appear in the correct order. Please see the correct Figs 1 and 2 here. Copyright: © 2015 Ismael-Badarneh et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which...
متن کاملEffects of atrial natriuretic factor on cyclic nucleotides in rabbit proximal tubule.
Atrial natriuretic factor induces renal sodium excretion by several mechanisms, including inhibition of angiotensin II-stimulated sodium reabsorption in the proximal tubule. In most tissues, the action of atrial natriuretic factor involves generation of the intracellular second messenger, cyclic GMP, but in the proximal tubule the presence of this signal transduction pathway has remained contro...
متن کاملThe role of renal proximal tubule transport in the regulation of blood pressure
The electrogenic sodium/bicarbonate cotransporter 1 (NBCe1) on the basolateral side of the renal proximal tubule plays a pivotal role in systemic acid-base homeostasis. Mutations in the gene encoding NBCe1 cause severe proximal renal tubular acidosis accompanied by other extrarenal symptoms. The proximal tubule reabsorbs most of the sodium filtered in the glomerulus, contributing to the regulat...
متن کاملAngiotensin II: a powerful controller of sodium transport in the early proximal tubule.
Angiotensin II has recently been shown to exert potent control over sodium and water absorption in the proximal convoluted tubule. This transport stimulation is effected by receptors on both the luminal and basolateral membranes of cells located predominantly in the early, S1 proximal tubule. Angiotensin II increases transport primarily by a Gi protein-mediated reduction in intracellular cyclic...
متن کاملDopamine and angiotensin type 2 receptors cooperatively inhibit sodium transport in human renal proximal tubule cells.
Little is known regarding how the kidney shifts from a sodium and water reclaiming state (antinatriuresis) to a state where sodium and water are eliminated (natriuresis). In human renal proximal tubule cells, sodium reabsorption is decreased by the dopamine D(1)-like receptors (D(1)R/D(5)R) and the angiotensin type 2 receptor (AT(2)R), whereas the angiotensin type 1 receptor increases sodium re...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 10 شماره
صفحات -
تاریخ انتشار 2015